skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martinásek, Josef"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the use of the J-integral to compute the statistics of the energy release rate of a random elastic medium. The spatial variability of the elastic modulus is modeled as a homogeneous lognormal random field. Within the framework of Monte Carlo simulation, a modified contour integral is applied to evaluate the first and second statistical moments of the energy release rate. These results are compared with the energy release rate calculated from the potential energy function. The comparison shows that, if the random field of elastic modulus is homogenous in space, the path independence of the classical J-integral remains valid for calculating the mean energy release rate. However, this path independence does not extend to the higher order statistical moments. The simulation further reveals the effect of the correlation length of the spatially varying elastic modulus on the energy release rate of the specimen. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026